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The  calculation of the Coulomb functions of real order and  argument  by  Steed’s technique is 
reviewed, with the object of clarifying the basis of the method in compar ison with more 
traditional ones.  The  range of arguments over which the calculations are successful is 
investigated and  reasons for the limitations in the asymptotic regions x +  co and  x- ’ + co are 
examined. Summaries of both the accuracy and  efftciency of the method, as  a  function of the 
arguments,  are presented. Expressions for an  approximate error estimate for a  specific value of 
the order L  are developed.  

1. INTRODUCTION AND SURVEY 

The  need  to calculate the Coulomb functions F,(o,x) and  G ,(Qx) and  their x- 
derivatives, has presented a  continuing computational chal lenge for the past thirty 
years, or more. The  functions FA and  G , are the solutions of the differential equat ion 

d2U/dx2+ [l-2q/x-1(12+ 1)/x2]U=0 (1.1) 

which are regular and  irregular, respectively, at the origin x = 0, and  which behave 
asymptotically as circular functions, 

F,(q,x)-+sint9,, x-+co, GA(~,x)-+~~~OA, x+ 00, (1.2) 

where 

6, = x - tf In 2x - $1~ + arg r(A + 1  + iv). (1.3) 

Almost all previous work has been  concerned with integral values of the angular 
momentum quantum number  J = L  > 0, in which case the singularity of G , at the 
origin.is a  logarithmic one. The  first detailed review, given in 1955  by FrGberg [I], 
was followed by the authoritative study of Hull and  Breit [2]. The  summary of 
Abramowitz in 1964  [ 31  contained formulae, a  brief table of the L  = 0  functions, and  
references to other tables. All three reviews were concerned with the repulsive 
Coulomb field (between like charges), for which r,r > 0. A comprehensive discussion 
was publ ished by Curtis [4], also in 1964, with tables for r7 < 0; for L  = 0, 1, 2, and  
for negative energies (i.e., bound  states) as well as for positive and  zero energies. The  
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definitions of Curtis differ from FA and G, [4, Eqs. 2.74-2.77, 6.15-6.161 in a 
manner appropriate for atomic physics requirements. 

The above methods, for integer ,l, were combined into an effective omnibus 
program by Bardin et al. [5] in 1972, in which, for L = 0, an extensive region of 
(v, x)-space, -500 < v < 500 and x > 0, was subdivided into ten regions and different 
computational techniques were applied to each. Further details were given in an 
unpublished report [6]. Recurrence relations and the method of Wills [ 71 enabled the 
functions for L > 0 to be calculated. The L = 0 functions are always calculated and 
the regular and irregular functions are obtained by different methods. Accuracies lie 
in the range 6-15 S as measured by the Wronskian relation (Eq. 2.3), although this is 
not always a reliable indicator [8, 12, 141. 

The most recent review is that of Kolbig [8] in 1972 and it surveyed methods and 
practical programs, giving deserved prominance to the techniques of Gautschi [9, lo] 
for obtaining the minimal solutions to three-term recurrence relations, in particular 
F,(q, x) for L = 0, l,..., LMAX, with LMAX in the region of 100 [ 11, 121. A useful 
bibliography which chronicles the numerous modifications to, and comments on, the 
program described by Kiilbig, and also includes numerous other special functions, is 
that of Fullerton [ 131. 

The evaluation of the irregular solution GL(r,r, x) has been long recognised as more 
difficult than the regular solution and it is discussed by Strecok and Gregory [ 141 in 
an impressive paper which illustrates methods of achieving 22 S accuracy in G, and 
G; over a restricted range of variables (&x) = (0.25,0.5) to (32,68). The two 
methods recommended are an Airy-function expansion and the evaluation of an 
integral. Neither is suitable for general use so Strecok and Gregory provide sets of 
rational-polynomial coefficients designed to achieve at least 13 S accuracy within the 
positive region bounded approximately by the lines q ~32, x N 70 and the origin. 

In 1974 an interesting and important new method appeared which was a significant 
improvement in many cases. It had been devised by Steed in order to calculate heavy- 
ion transfer reactions and it proved most successful [ 151. The approach is based on 
continued fractions and is derived in the paper by Barnett et al. [ 161. The method was 
incorporated in the subroutine RCWFN (real-Coulomb wavefunctions) and it was 
shown to have a wide range of applicability, comparable with the methods of 
Bardin et al. [5], to be as accurate, and to be efficient. Furthermore, L-values from a 
nonzero minimum L, to a maximum value exceeding 1000 could be calculated, and 
all four functions FL, G,, FL, and Gt were obtained at the same time. 

The code had the merit of working reliably in the new regions of high L-values 
appropriate to Coulomb-excitation calculations with heavy ions and it was at the 
heart of a DWBA program to calculate Coulomb excitation by Feng and Barnett 
[ 171, which was used in a survey of nuclear effects in Coulomb excitation and in a 
study of how nuclear effects might distort quadrupole-moment measurements [ 181. In 
such calculations overlap integrals of the form 

M,$-l(R) = (kk’)-’ Jm I;,(P~, kr) E;,(~!, k’r) r-L-1 dr 
R 
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are required, where the starting radius is fixed exterior to the region of the nuclear 
force. The quantities 1, I’ are angular-momentum quantum numbers coupled by the 
triangular relations to the multipolarity L, and the integrals (and related ones where 
one or both Fs are replaced by G’s) can be obtained by direct quadrature, with some 
effort [ 171, or they can be calculated by an intricate series of recurrence relations, 
e.g., [ 191 for the L = 2 case for R = 0, which are based on an extensive literature 
[20,21]. More recently, explicit results for Coulomb-matrix elements for nonzero R 
have appeared, in papers by Wright [22] and by Rhoades-Brown et al. [23] and in a 
detailed and comprehensive treatment by Raynal [24]. In Raynal’s method all the 
integrals are expressed in terms of a small number of integrals of the type M ;?(R) 
and these could readily be obtained as in [ 171. Integro-differential equations for 
electron-atom scattering, where rl < 0, have been solved with RCWFN [25]. 

Calculations in the preceeding work have been restricted to integer-l solutions of 
(1.1) and since the nature of the singularity of G, changes when I is not an integer 
many of the specific methods referred to above are no longer valid. It is an important 
feature of Steed’s method that the form of the singularity does not have to be 
explicitly incorporated into the solution. The consequence, for A real, is a 
considerable extension of the method; to Klein-Gordon wavefunctions, to Bessel 
functions, and to others, and these will be considered in Section 5. 

The plan of the paper is to review Steed’s method for real 1 in Section 2, and to 
consider in what respects it extends the methods of Gautschi [9, IO], and of Wills [7] 
as used by Bardin et al. [5,6], in Section 3. Another purpose of the paper is to 
delineate clearly those regions of parameter space best treated by Steed’s method; this 
is discussed, with graphs, in Section 4. The final section treats calculations for the 
cases ;1 #L, and comments on some, possible, future developments. 

2. CONTINUED-FRACTION SOLUTION FOR COULOMB FUNCTIONS 

Steed’s method was derived in the original paper [ 161 and its effectiveness has been 
demonstrated both there and elsewhere [ 16,27,33,34]. Descriptions of algorithms 
suitable for Coulomb and Bessel functions are given in a recent paper 1261. The 
derivation, however, was concerned with detail and completeness, and the underlying 
principles of the method were perforce somewhat obscured. In this section the general 
approach of the method will be emphasized, since Steed’s method is not restricted a 
priori to the Coulomb case of a three-parameter second-order differential equation. 

The outgoing wave of angular momentum Ih is written 

H,h x> = G,(rt, x) + iF,(rt, x> (2.1) 

and its logarithmic derivative with respect to x 

H’JH, = p + iq = (GI, + iF’J(G, + iFA) (2.2) 

forms an essential component of the solution, for it can be calculated by a continued 
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fraction expansion (CF2, Eq. 2.15). The real part p is the logarithmic derivative of 
the modulus of the wave (Gf, + Fi)“*, while the imaginary part q is the ratio of the 
Wronskian determinant to the squared modulus. The Wronskian relation for 
Coulomb functions is 

WEF;G~-F~G~=~ (2.3) 
so that 

q=(G;+F;)-‘. (2.4) 

Steed’s method consists of the combination of Eqs. (2.2), (2.3) with an expression 
for the logarithmic derivative of the regular function 

f = Fi(rl, x)/l;,h xl (2.5) 

(which is obtained by Eq. 2.14), for when this is done allfour Coulomb functions can 
be obtained (the symbol s denotes the sign of F,,): 

F,(rl, x> = s[(f - p)*/q f 41 - “‘3 P-6) 

Fi(rl, xl = .P’,th x>, (2.7) 

G,(rl, x> = (f - P) I;,(% x)/q, (2.8 > 

Gi(rl, xl = ~Gnh x) - qFl(rl, x). (2.9) 

For later reference one introduces a quantity y defined as the ratio between the 
irregular solution and the regular one; 

Y = G,h x)/F,(rt, x), (2.10) 

then (2.8), (2.9) can be written as 

G, = YF, (2.11) 

and 

GI,=h--)I;,. (2.12) 

In Section 4, the behaviour of the quantities f, p, q, and y, as functions of the 
arguments v, x, A, is described. The Coulomb functions change character at the 
turning point (for the Ath partial wave), 

x, = q + (II’ + AZ + A)“*, (2.13) 

being oscillatory when x > xA, and monotonic for x < xA when GA -+ +co and 
FA + +0 as x --+ 0. The ease with which f and p + iq are obtained from their respective 
continued fractions also depends on x, x,, and rZ (Section 4). The evaluation of the 
continued fractions is efftciently performed by Steed’s algorithm, which was 
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introduced in [ 161 and which is contrasted with other methods in [26]. It is clear 
then, that givenf, p, and q and by using (2.6)-(2.9) the Coulomb functions at a fixed 
value of A are determined to within the sign s. The value of s was shown in [ 161 to be 
the sign of the ti denominator of the continued fraction when ti is large enough so 
that the fraction has converged to the required accuracy. (It should be noted that this 
denominator is not T, in (2.14) which is the denominator of the tih term of the 
continued fraction). Now, in Steed’s algorithm the separate denominators of the 
continued fraction are not computed, to avoid well-known overflow problems (e.g., 
[9]) so that denominator sign changes are counted in the detailed programming of 
CFl. 

The expression for f, developed as a continued fraction, is CF 1: 

where the symbols we, 

The corresponding 

R, = (1 + ~~/1~)“~, s, = n/x + rp, 

T,,=S,+SA+,= (U + 1)(x-’ + 1/(3L2 + A)). 

expression for p + iq is CF2: 

(2.14) 

Gi + iFi = b 
p+‘q= G, + iFA 

+ iab/x (a+ l)(b+ 1) 
O 2(x-q+i)+ 2(x-v+2i)+ . . . ’ 

(2.15) 

with 

b, = i( 1 - q/x), a = iq -1, and b=iq+I+l. 

The procedure is varied for a range of integer-spaced 1 values between I = 1 and 
I = m (where 1- m is a nonnegative integer) and the complete algorithm COULFG 
is given in [26] with the program and its tests appearing in [27]. CFl is evaluated for 
the maximum d-value, 3, = 1 so that F; = f,F, and, for the moment, the value of F, is 
unknown (but its sign u is determined as described above), and it is taken to be u. 
The recurrence relations satisfied by FA and Fj, are 

and 

F .A - I= (S,F, + WIR, (2.16) 

F;-, = SAF,,-, -RAF,,, for I=l,l- l,...,m+ 1 (2.17) 

and the unnormalised FA (and F;, if the derivatives are required) can be stored. The 
ratio of FL to F, is the value off,, and the sign of F,, s, is known; thus using (2.15) 
for Iz = m and solving as in (2.6)-(2.9) there results all the functions for A = m. A 
comparison of the correct F,,, just obtained with the unnormalised one yields the scale 
factor (i.e., the correct value of F,) and hence all of the stored functions can be 
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correctly normalised. The values of G, and Gh provide all of the irregular functions 
by (stable) upward recurrence from A= m + 1 to A = E, if these irregular solutions are 
required. 

It is striking measure of the power of Steed’s method that the calculation of the 
A = 0 values is not obligatory, and indeed any real minimum A can be chosen 
(restricted by m > -1); that no knowledge of the nature of the singularity at x = 0 is 
required; nor is any expression of the irregular function in terms of a series of regular 
functions [5] or as an integral [ 141 necessary. These three factors are in marked 
contrast to other approaches. 

Some comments on the derivations of CFl and CF2 given in the original paper 
[ 161 seem appropriate. The differential equation implies, and is implied by, a three- 
term recurrence relation in 1, 

R F -T F At2 at2- ,I+1 AtI -R,,,F,,, (2.18) 

with the coefficients defined following (2.14). From any such recurrence relation a 
continued fraction may be trivially derived, but the relationship is in fact a deep one, 
for, as Gautschi shows in some detail [9, Sect. I], the continued fraction only applies 
to the minimal solution of (l.l), i.e., to F,, and not to any combination of the 
dominant solution G, which also satisfies (2.18). Blanch [28] has discussed the iden- 
tical problem with respect to Bessel functions. From (2.18) one has, 

F,I+,P’,=R,+,I~TA+, -R,t,(R,t,IF,t,)I 
and then on incrementing 1 by 1 and substituting into the right-hand side the 
continued fraction for the regular solution emerges; 

F AtI R AtI R:t, Ri+, 
7=-F TAt3 - ..a ’ 

(2.19) 

Now, (2.17) can be written (with A + 1 for A) as 

WF,t=S,t, -R,t,(F,t,IFJ 

so that CFl, Eq. (2.14), results from (2.19). 
For the derivation of CF2 in [ 161 the outgoing wave (2.1) was written in the form 

HA = MA(rtt xl w(i~.J, (2.20) 

where the asymptotic phase 0, was defined following (1.2). Related and similar 
approaches are discussed in [2, Sect. C]. Then the differential equation* for MA is 

M’j + 2b,M; + abxe2MA = 0, (2.21) 

* There is a misprint in this equation, which follows (23) in [ 161, kindly pointed out by A. Schichl; 
the p-* (or x-* term is missing). 
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with solution 

M*(?, x) = *Fo(a, b; @ix)- I), 

where b,, Q, b are defined following (2.15). The continued fraction CF2 can then be 
derived from (2.21) and its related three-term recurrence relation. An alternative 
expression in [ 161 involved the continued fraction of Gauss and converged more 
slowly, as measured by the number of iterations. But in fact this expression can be 
contracted exactly into (2.15), i.e., (28) of [16], by means of (2.75) of Blanch [28] 
for’ the odd part of a continued fraction, and so precisely the same expression for 
CF2 is recovered. 

3. COMPARISON WITH THE METHODS OF GAUTSCHI AND OF WILLS 

It is of considerable interest to isolate the differences between the methods of Steed, 
Gautschi, and Wills [7] (which was adopted in the program of Bardin et al. [5]) for 
they have rather different limitations, as well as many common features. 

Gautschi’s method [8-121 is valid for the regular function, i.e., the minimal 
solution to (1.1). Although there have been a number of attempts, e.g., that of 
Boersma [29], there is yet no satisfactory method of obtaining the irregular function 
from the regular one [e.g., 301. In the Gautschi method, also described in detail by 
Kiilbig [ 81, a quantity j2 proportional to FL is obtained; 

fi<v, xl = FL! FLh’, xY[PLY C,(a)l, (3.1) 

where the Coulomb coefficient CL can be recursively defined (for integer L as) 

C,, ,(tt) = R,, , C,(tl)/(2L + 31, L = 0, 1,2,..., C,(q) = [27rq/(e2”Q - l)]“‘. 

The fundamental equation (1.1) then yields a three-term relation having j?, as its 
minimal solution [9, Eq. (7.9)] which is 

R2 ~+1~r.+,/(2L+3)-TT,~,i(2L+1)+~,-,i(2L--1)=o. (3.2) 

This equation can be immediately expressed as the continued fraction 

3L+, 1 R;,, R;,, 
-T TL+L- T,,,-... 1 ’ (3.3) 

which is nearly identical with (2.19), as it must be since the same starting point was 
adopted for slightly different functions. From (3.2), using a backward-recurrence 
method, which is a variant and a computational improvement on the well-known 
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Miller method, Gautschi [9, Eq. (3.9)] obtains all thef’, and then proceeds to obtain 
the overall normalisation of theTL by the equation 

WI, x> = i AL(V9 x)3&l, xl, (3.4) 
L=O 

where the /i, are certain Jacobi polynomials and are real. The calculation of S(q, x) 
presents some problems for Coulomb functions [8-lo] although for simpler functions 
(e.g., Bessel functions) there are fewer difficulties. The upper limit on the summation 
v is taken as greater than the maximum L,,, but its choice is not straightforward [9, 
Eq. (7.25)ffl; [8, Eq. (19)ff] and requires some calculation. If the final accuracy is 
not sufficient a larger v must be chosen [9, Eq. (3.9)ff] and S re-evaluated; this is the 
well-known problem in backward-recurrence methods [ 26,9, 71. 

Steed’s method avoids the problem by aforward evaluation of (2.14), as detailed in 
[ 16,261, thus obtaining f, = F;/F, or equivalently F,, i/F, (see (2.19)), to the required 
accuracy. For this comparison the maximum 1, I = L and the minimum, m = 0. The 
procedure amounts to recognising when v has a sufficient value as one reaches it. The 
normalisation is achieved after using the recurrence relations, together with the 
complete irregular solution, by introducing both the Wronskian and the value of 
p + iq = Hk/H, (calculated by (2.15)). An alternative procedure, which was 
suggested by one of the referees, is to compute successively, both 

fI- , = S, - R:I& + fnh for I=l,l-l,..., m+l, (3.5) 

and then 

F iI+1 = t.fi -s*+l)F,IR*+,~ for A=m,m+l,..., I-l, (3.6) 

starting from the known magnitude of F,,, (2.6-2.9). The sign is determined by a final 
comparison with the known sign of F,, on the completion of (3.6). The derivatives 
are obtained from FL = fA FA for each L. 

Computationally it is an advantage to transform away the square-root evaluation 
of the R,, and this is done by the choice of & in the Gautschi method and by the 
form of the equivalent continued fraction (2.14) in Steed’s method, and both methods 
will end up at the same effective value of V, i.e., the appropriate maximum term in 
(2.14) or (3.4), for the same accuracy. Nevertheless both methods require I - m 
(or L) square roots, R,, the one for the recurrence relations (2.16), (2.17) and the 
other for the final normalisations (3.1). 

The method proposed by Wills [7] and adopted by Bardin et al. [5] for integer A, 
and by Takemasa et al. [ 3 11 for complex rZ, is to compute the regular functions from 
the irregular ones by means of the Wronskian relations; 

F.&A = i R+,‘%+,W1 +F,+,IG,+,, (3.7) 
i=A 
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‘i/G;= i [Ri+lG;+,Gf]-‘(R:+,-S:+,)+F:+,/G:+,. (3.8) 
i=A 

The sums are carried out for a v sufficiently large that the last terms are sufficiently 
small. This occurs when the turning point for the uth partial wave x, exceeds the 
value of x by a margin which depends on the details of the accuracy sought and the 
values of q, x, and Iz. Relevant graphs are discussed in the next section where details 
of Steed’s method are given. The required values of G,, GA are obtained by upward 
recurrence from the previously determined values at the minimum I, G,, and G&. 
Thus the method can only be applied if the irregular solution can be calculated first, 
in which case it represents an alternative to the Gautschi backward-recurrence 
method. 

A further point in the Wills paper is worth commenting on. He refers to an 
improvement on Miller’s method (in which F,, JFv is set equal to zero for a 
suitable v) by estimating the value of FL+ JFL directly with a continued fraction, 
given by Mechel [32] in the case of spherical Bessel functions and generalised by 
Wills to Coulomb functions. The continued fractions given are nothing but (2.14) 
with an equivalence transformation; the claimed improvement then rests entirely on 
how one evaluates the continued fractions, for if one uses a backward-recurrence 
approach then, as always, there is the awkward question of deciding on the starting 
value of v. 

It is clear than that there are identical features in all methods; relative values of the 
regular function are obtained from (l.l), i.e., (2.18), in the methods of Gautschi and 
of Steed and the differences arise in the normalisation, whereas the method of Wills 
requires enough irregular functions so that (3.7) and (3.8) converge (and which may 
be many more than are required) before it can even be used. Steed’s method, it seems 
clear, offers significant advantages over the other two, especially as it will solve for 
the Coulomb functions of a single I-value [33]. 

4. PARAMETER RANGE AND OPERATION OF STEED'S METHOD 

This section provides a discussion of the parameter range appropriate to the 
method and its accuracy and efficiency. Attention is paid to these matters in order to 
illuminate the characteristics of Steed’s method and to emphasise that the technique 
has its greatest usefulness in the intermediate range of x. For a given real q i 0 and x 
value, and for a real angular momentum 1: m < 1< 1, where I- m is a nonnegative 
integer and m > -1, the behaviour of the program is readily characterised by the 
smallest turning point x, and the value of 1, since these predominantly determine the 
behaviour of.the CF2 and CFl, respectively. 

COULFG is the name of both the general algorithm described in (261 and the 
FORTRAN program [27] which embodies Steed’s method for Coulomb functions. 
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This program is more general and is a more useful version than was RCWFN [ 161, 
since it not only calculates FA, G,, Fi, and G; for a range of real A-values, but also 
calculates Bessel functions and spherical Bessel functions by means of minor changes 
in the method [26]. A version to compute results for a single real 1, program KLEIN, 
is fully described in [33]. Coulomb test calculations, reported in [ 16,27, 33,341, 
have been used to verify results of Froberg [ 11, Curtis [4], Bardin et al. [S], Kolbig 
[8], Strecok and Gregory [14], and others. 

The range of parameters is an extensive one; provided x 2 x,, then COULFG 
converges at least for -lo4 < n < lo4 and 15 1000. This is the oscillating region 
for the functions of smallest angular momentum, 2 = m (2.13). Full accuracy is main- 
tained when x > x, ; i.e., if the two continued fractions (2.14), (2.15), are computed 
to a relative accuracy ACCUR (e.g., 10-16), then the G,(Q x,) and G&(g, xm) were also computed 

and a numerical integration used to reduce x to the desired value, whereas in KLEIN 
[33] and COULFG [27] a JWKB approximation was adopted when 

q < lo4 
ACCUR, corresponding to GX lo6 on a machine with 16 S real words. 

The limiting forms of the Coulomb functions for x < x, can readily be obtained 
from (2.6)-(2.9) since as x -+ 0, then q + 0 while f and p remain of approximate order 
unity and s = + 1. Thus for x + 0, 

F,,, -, q1’2/(f - P), FL, -+ fs “*/(f - P), -l/2 
G,-+q 9 G; -+ pq - ‘12. (4.1) 

These simple results immediately imply that if the magnitude of the relative error in 
q, ) 6q/q 1, sufficiently exceeds the corresponding magnitudes ] 6p/p ] and ] Sflf], then all 
the Coulomb functions for L = m will have the same relative error, f 16q/q(. The 
degree of approach to (4.1) can be quantified in terms of the ratio y (2.10) of the 
irregular and regular functions, and (2.6) becomes (s = 1 for x < x,,,), 

F,(q, x) = q-“2(1 + Y’)-“~ = [q”‘/(f - p)](l + Y-~)-“~. (4.2) 

Reliable estimates of y came from the JWKB expressions of Hull and Breit [2] 
simplified in [33]; 

y = 2g”’ exp(-2#), (4.3 ) 

where 

g= 2q/x +/2/x2 - 1, 

the approximate angular momentum p is found from 

,u'=m(m+l)+& 
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and 

24 = 2xg’12 - 21 tan- i [xg”‘/(x - q)] -p ln[( gl’* + S,)‘/Ri] + In g1’2. (4.4) 

Error estimates which are valid for all x can be derived on the assumption that the 
uncertainties Sf, &p, and Sq are independent and can be estimated for a single value of 
A. If the symbol U stands for any of F,,,, G,, FL, or Gh, then the magnitude of the 
resultant uncertainty in U, neglecting higher-order terms, is 

6U N [ u;(sf>’ + u;(sp>’ + U&%l>‘] 1’2, (43) 

where the partial derivatives U,= aU/af, etc., are obtained from (2.6 j(2.9) and are 
listed in Table I. One contribution to Sf, dp, and dq arises from the terminations of 
the algorithm for CFl and CF2, respectively, 

IQ-1 < Ifl- ACCUR, ISPI + I&l < (IPI + 141) * ACCUR. 

An upper bound on ) Sp 1 and on ] 6ql is (I pI + 1 q)) . ACCUR, which becomes when 
x < x,, IpI . ACCUR. The result quoted after (4.1) becomes 

(4.6) 

which was noted earlier for some high-precision calculations 1341 (a direct 
comparison with the results of Strecok and Gregory ] 14]), and is the reason for the 
accuracy-guidance value PACCQ in [27,33]. For x > x,, then both the functions U 
and their derivatives in (4.5) are of order unity so that for (W/U) there is no reason 

TABLE I 

Logarithmic Partial Derivatives of the Coulomb Functions with Respect tof, p, q 

u Value u-'aulaf u-1 aufap u-'aufaq 

F 
F’ 
G 

G’ 

F 
F’ 
G 
G’ 

s[q”‘/(.f- P)](l + Y-2)-“2 -yF’ 
P f-’ - yF* 

YF = df - p&T/q F’y-’ 

(PY - q)F 
P2 

(PY - 4 

4”2/u - P) = ll(Yq”2) -w - P) 
.’ y-; P) -PIIScf - P)I 

4 VlY2Cf - P)l 
P4 

-10 
.mPYV - PI1 

- 

YF2 (1/2)q-’ -F2 
yF2 (1/2)q-’ -F* 

-&-’ -(l/2)9-’ - F2 
Y--P2 ~ (1,2)q-‘-F’-@=&. 

(PY - 9) 

u.f - P) (W)q-’ 
vu - P) (l/2) 4-l 

-ll[Y2df - PI1 -(Wq-’ 
l/P -(l/2) 4-l 

Note. f is the logarithmic derivative of F; p is the logarithmic derivative of the modulus (G + iFl; 
while q is the inverse square modulus (G’ + F2)-‘. The symbol U stands for F, G, F’ or G’, s is the sign 
of F and y = G/F = df - p)/q. The second half of the table gives the limiting forms as x -+ 0 and 
x<x,,whenqjO,(y(~~,s=+l. 
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TABLE II 

Approximate Measures of the Rate of Convergence of COULFG for 1 = 0 

X 

0.1 1.0 10 100 1000 

v NFP NPQ NFP NPQ NFP NPQ NFP NPQ NFP NPQ 

-1000 34 4625 73 965 183 286 520 91 1844 30 
-100 18 3836 34 484 16 99 227 31 1215 13 

-10 12 3718 20 404 44 51 167 14 1137 7 
-1 10 3693 17 395 39 43 159 10 1123 6 

0 10 1 16 1 38 1 159 1 1123 1 
1 10 3894 16 443 38 48 157 10 1121 6 

10 11 4225 18 579 34 101 150 15 1114 1 
30 13 - 21 - 37 - 129 28 1094 9 

100 16 - 26 - 45 - 93 110 1023 14 
300 20 - 32 - 56 - 102 250 725 25 

1000 26 - 44 - 77 - 137 - 285 292 

Note. A blank entry signifies that convergence was not reached since the true value of q < ACCUR. 
NFP = number of iterations of CFl to achieve relative accuracy ACCUR, NPQ = number of iterations 
of CF2 to achieve relative accuracy ACCUR. Criteria: abs(6f) Q abs(f) ACCUR; abs(6p) + abs(bq) < 
(abs(p) + abs(q)) . ACCUR. ACCUR for these tests was lo-“. 

to expect drastic loss of accuracy from the value of ACCUR; and indeed comparison 
with known values suggests that a loss of 2 S is the most one should anticipate. A 
comprehensive error analysis of Steed’s method and his forward-continued fraction 
algorithm is highly desirable, particularly if many iterations are needed. 

A measure of efficiency of the program is provided by the number of iterations 
(NFP and NPQ) q re uired for the convergence of the two continued fractions (noting 
also that CF2 demands a greater amount of arithmetic). Table II gives NFP and 

‘““““k:r, vj 

IO 

04 I-0 IO loo ICOO 0.1 IO IO loo 1000 

x I 

FIG. 1. Number of iterations needed to achieve a specified relative accuracy, here lOma’, in the two 
continued fractions CFl and CF2. For all curves 1= 0 and for each value of q the graphs show NFP 
and NPQ as a function ofx. The turning point is xrp = 2~. 



C-F EVALUATION OF COULOMB FUNCTIONS 183 

NPQ for 1= 0, -1000 < q Q 1000 and 0.1 <x < 1000. ACCUR here was taken to 
be lo-” in a test which explored the most accurate results the method is capable of 
using the IBM extended-precision compiler, where REAL * 16 variables have a 112- 
bit mantissa. The pattern for a more usual choice of ACCUR, lo-l4 or 10-16, is 
similar. The values of Table II are displayed in Fig. 1. For CFl the number of 
iterations NFP increases steadily with x and for large x and small q, NFP -x + c, 
where c - 120; while for CF2, NPQ increases rapidly as x decreases, with the 
variation for small q being NPQ z 5000/x. The exception for CF2 is when q = 0, for 
then it terminates with the first term (and Riccati-Bessel functions are obtained). 

The behaviour of CFl is readily predicted, for (2.14) can be transformed into 

WFA=L~ (R:+,IT,T,+,) ... ($/,-J-v), 1 _ . . . (4.7) 

and Blanch [28] shows that Ri/T,-, T, < i for convergence to be possible. For large 
v, T,-, = T, 2: 2S, so the condition is equivalently written 

Rt/S2, < 1, or x<x,, or v2 2 x2 - 2?jx. (4.8) 

Convergence of the m inimal-solution continued fraction (4.7) then begins with the 
term v for which x, first exceeds the value of x. For large x, depending on the sign 
and magnitude of q, Eq. (4.8), this can also be large and so methods of this type are 
unsuitable in the asymptotic region x + co. When the parameters are not too small, 

NFP z (x2 - 2rjx)“’ - A + c. 

The convergence is rapid, once it commences; the change in c on changing ACCUR 
by 19 orders of magnitude to lo-l4 is a decrease by -10 (for small x) and a decrease 
of =80 for x between 3000 and 5000. 

The convergence of CF2 = p + iq is very slow for x 5 1, reflecting the presence of 
the singularity in G, at x = 0, and in addition, when x < x,, q becomes rapidly less 
accurate, as discussed above. It is these features which make Steed’s method 

x 

FIG. 2. Value of log(-p) (q positive, -), or log p (q negative, ---) for a set of I] values and a range 
of x with 1= 0. The real part p of CF2, is M’JM,, where Ml is the modulus 1 G, + iFA I. 
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unsuitable when x + 0 and the expansion procedures of Bardin et al. [ 5,6j are 
superior. The decrease in NPQ on changing from 1O-33 to lo-l4 is mainly dependent 
on x and, e.g., was observed to be 3360 at (q = 3, x = 0.1); 616 at (-1000, 1); 389 at 
(3, 1); 174 at (-1000, IO); 46 at (3, IO); 10 at (-100,3000), and 12 at (3,300O). 
Similar results were shown in [26, Fig. 21 for the case ,? = --d and v = 0. A number 
of calculations have been done to explore the behaviour of p = Ml/M, and q = Mh *, 
where Ml is the modulus (2.20); they are plotted in Figs. 2 and Fig. 3. The behaviour 
for x + co is predicted from the asymptotic expression (12.16) in Hull and Breit (21; 

p 3 -fijx -* - ;(a + ?#7”) x-3 + 0(x-4), X-CO 

q + 1 - 7x-i - iox- + 0(x-3), (4.9) 
x-00 

in which a = q2 + n(A + 1) = (x - xn)‘. 
Thus, p has the opposite sign to v and in this limit J pi decreases as x-*, while 

q-+ 1 from above or below according to the sign of II. For q = 0 the approaches to 
the limit depend on A, as in (4.9). The small =x behaviour of the modulus is greatly 
different for v >< 0 (Fig. 3): for positive q, then q 3 0 exponentially (i.e., M-, 00) as 
x + 0 and x < x,, and this result is of course given by the JWKB expressions (4.3), 
(4.4), i.e., q = exp(24), whereas for negative q (and 1= 0), then q varies 
approximately as x - “* independently of q. In the case of p (Fig. 2), for v > 0, then 
for x 5 q, (pi is proportional to x-i’*, while for v < 0 and x < 10, then Ip ] varies 
approximately as x - ’ . 

A unique feature of COULFG and, naturally, KLEIN [33] is that they will 

FIG. 3. Composite graph of the value of q for differing q-values for 0.1 <x < 10000 and I = 0. The 
upper scale for t] negative is logarithmic while the lower scale refers to log q for q positive. The 
imaginary part q of CF2, is Mi2 = (G: + Fi)-‘. 
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0 IO 20 30 40 50 60 70 80 90 100 
x 

FIG. 4. Values of q as a function of the order 1 when the Coulomb functions are evaluated at I = 
m  = 1. Those for large 1 may still be evaluated at a smaller value of m  and the recurrence relation used, 
as in COULFG. 

calculate the Coulomb functions for a specific value of A. By setting m  = 1 = 1 [27], 
instead of using the recurrence relations from a value of m  close to zero the result is 
directly calculated. Values of q as a function of the desired I are shown in Fig. 4 for 
two situations; q = 10, x = 5 and q = 10, x = 50. In the first case, even for A= 0 the 
point x = 5 is well below the turning point x,, = 20 and q N lo-” (i.e., G, N 3.105), 
and for L N 20, q < lo-‘) (i.e., G, = 3.1016). Thus a direct evaluation for I = 20 
would result in no significant digits even for ACCUR = 10-j3. In the second case 
x > x38 so that values of the functions for 1 > 38 can be obtained to full accuracy by 
recurrence starting at m  = 38. A description of a similar division of the I-space into 
convenient regions for a DWBA calculation is given in [ 171. 

5. REAL-A CALCULATIONS, AND CONCLUSIONS 

The focus of this article has been on the basis of Steed’s method as applied to real 
Coulomb functions, and on its relationship to the methods of Gautschi [8-121, Wills 
[7], Bardin et al. [5,6], and of Strecok and Gregory [ 141. Details of the derivation 
appeared in [ 161, and of a number of interrelated algorithms in [26], while programs 
and their testing are found in [ 16,27, 331. In this article calculations were made over 
an extensive region of parameter space in order to assess the eventual lim itations of 
Steed’s method, and their causes. The basic role of the quantities p and q, related to 
the modulus of HA (2. I), (2.20) by p = MA/M, and q = M ; *, was emphasised and 
graphs of their variation with x given in Figs. 2-4. Whenever x 2 x, the potential 
accuracy of the method was shown by a simple analysis to be close to the machine 
accuracy, and the loss of accuracy for x < x, to be predictable in terms of p and q. 

The realisation that Steed’s method also applied to real L enabled regular and 
irregular solutions of the relativistic Klein-Gordon equation to be obtained; for the 
Lth partial wave the effective value of A is 

A= ((L + f)’ -pay* - f, 

581/46/2-2 
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where a is the fine-structure constant e2/hc, and Ze’ is the product of the interacting 
charges. The methods of RCWFN were used by Cooper et al. [35] in a pion- 
scattering study following developments by Cramer and Lynch 1361. Recent 
references [37] emphasize how the Dirac equation can also be cast into the form of a 
nonrelativistic-Coulomb equation with nonintegral 1; Steed’s method can again be 
used, and the new program, KLEIN [33] is suitable. Setting q = 0 and renormalising 
the functions allows the calculation of regular and irregular cylindrical and spherical 
Bessel functions of real order. The recent paper [26] summarises the various 
algorithms embodied in the program COULFG [27] and provides an extensive 
discussion of how the methods embodying Steed’s technique can be adapted for 
Bessel functions, for the oscillating Airy functions and also for the Gamma function, 
r(l + v). 

Steed’s method normally involves relatively few iterations (say NFP + NPQ 5 100) 
and a small number of square-root evaluations (I - m); it is thus remarkably fast. 
Even so, direct methods cannot compete in speed with the well-known technique of 
using sets of rational-polynomial coefficients. Special functions can be represented in 
a number of ways, discussed, e.g., in survey articles by Cody [38] and Gautschi [39]. 
While the approach is very efficient in one dimension, say for a range of x with A, rl 
held constant, it is much more difficult in two, or more. A consequence is the large 
number of coefficients required even over modest ranges of the parameters. Table III 
summarises the J. = 0 results of Strecok and Gregory [ 141 for the irregular solution 
and its derivative only; the ranges of II, the maximum relative error, and the number 
of terms required in the approximations are given. It can be seen that a subset of 
nearly 300 coefftcients is necessary to produce results accurate to 14 S or better for 
the three cases; x = 2r7, all v; x = 1, 0 < 9 < 1; and x = 30, 15 < q < 30. Should 
improved accuracy be desired, then more terms are needed and all the coefficients 
need recalculation. Programs such as COULFG, where the accuracy is not limited in 

TABLE III 

Sets of Rational-Polynomial CoefIicients and Their Ranges of Validity 
for G,(q,x), G;(q,x) Computed by Strecok and Gregory [ 141 

Range of x Range of r] 

Number of coefftcients 

GLl GA 
Significant 

digits 
Maximum relative 

error 

x=2?) 15 <q 25 25 26 S <lo-” 
3.5<?7<15 I8 16 21 s (2 x lo-l4 
2 < < 3.5 t] 16 16 21 s <lo-‘4 
l<q<<2 16 16 21 s (lo-14 

x=1 0<1<1 22 22 21 s <1O-‘6 (absolute) 
x=30 15 < Q 18.5 q 18 18 21 s <2 x lo-” 

(Chebyshev 18.5 < 7 < 22 16 17 21 s <5 x lo-l4 
polynomial) 22<t]<30 

(lb Z,) 
18 21 s <5 x IO--l4 

ln(-G;) 
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principle, are well suited to providing the input grid of values on which rational 
polynomial approximations can be based. 

It is also of interest to extend the range of the parameters: For negative x the 
algorithm produces the expected result, (l.l), F,(-q, -x) = F,(x, II), and in 
particular the results of Ikebe [40] can be verified for the zeros of FL and FL. He 
proves that the positive zeros of F,(-q, x) are given precisely by the absolute values 
of the negative zeros of F,(Q x), and similarly for F;(-q,x) and FL(q,x), and 
evaluates them by an elegant eigenvalue method. Steed’s method provides the 
derivatives so that a simple use of Newton’s method obtains the zeros [33]. 

For negative A in the range -1 < 1& 0, Steed’s algorithm is effective as it stands; 
and for I < -1, then one computes Coulomb functions of order -(A + l), which is 
positive. A most attractive possibility is the extension of the algorithm to complex 
arguments and progress in this direction has taken place for Klein-Gordon equation 
calculations with complex ), [35,36]. Other methods for complex energy [41] and 
complex I [3 l] are in the literature based on asymptotic formulae. Steed’s method 
also appears satisfactory for imaginary x and hence may be suitable for the decaying, 
negative-energy solutions appropriate to bound states [42,43], but this extension 
awaits more extensive development. Whether or not these approaches will result in 
effective computer programs, and whether the method can be extended more generally 
to other hypergeometric functions, remain unresolved but challenging questions. 
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